HEAL DSpace

Water Distribution System Analysis: Newton-Raphson Method Revisited

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Spiliotis, M en
dc.contributor.author Tsakiris, G en
dc.date.accessioned 2014-03-01T01:37:32Z
dc.date.available 2014-03-01T01:37:32Z
dc.date.issued 2011 en
dc.identifier.issn 0733-9429 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21548
dc.subject Flow resistance en
dc.subject Pipe networks en
dc.subject Water distribution systems en
dc.subject.classification Engineering, Civil en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Water Resources en
dc.subject.other Flow resistance en
dc.subject.other Gradient algorithm en
dc.subject.other Head loss en
dc.subject.other Hydraulic heads en
dc.subject.other Iterative procedures en
dc.subject.other Newton-Raphson en
dc.subject.other Pipe networks en
dc.subject.other Q method en
dc.subject.other Simplified algorithms en
dc.subject.other Water distributions en
dc.subject.other Algorithms en
dc.subject.other Convergence of numerical methods en
dc.subject.other Inverse kinematics en
dc.subject.other Jacobian matrices en
dc.subject.other Local area networks en
dc.subject.other Systems analysis en
dc.subject.other Water distribution systems en
dc.subject.other Newton-Raphson method en
dc.subject.other accuracy assessment en
dc.subject.other algorithm en
dc.subject.other discharge en
dc.subject.other distribution system en
dc.subject.other flow modeling en
dc.subject.other fluid dynamics en
dc.subject.other hydraulic conductivity en
dc.subject.other hydraulic head en
dc.subject.other hydraulics en
dc.subject.other pipe flow en
dc.title Water Distribution System Analysis: Newton-Raphson Method Revisited en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)HY.1943-7900.0000364 en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000364 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract Looped water distribution systems are conventionally analyzed using iterative methods such as Cross, Linear, Newton-Raphson, and Gradient algorithm methods. Depending on the unknown (hydraulic head or discharge), the methods are characterized as h or Q methods. This paper focuses on the h-Newton-Raphson method, which uses the Darcy-Weisbach head loss equation. The paper presents a procedure for improving the h-Newton-Raphson iterative procedure by directly calculating the discharge of each branch by using the Swamee and Jain equation. The proposed procedure leads to a simplified algorithm and more accurate determination of the Jacobian matrix, which accelerates the convergence of the algorithm. DOI: 10.1061/(ASCE)HY.1943-7900.0000364. (C) 2011 American Society of Civil Engineers. en
heal.publisher ASCE-AMER SOC CIVIL ENGINEERS en
heal.journalName Journal of Hydraulic Engineering en
dc.identifier.doi 10.1061/(ASCE)HY.1943-7900.0000364 en
dc.identifier.isi ISI:000293530300008 en
dc.identifier.volume 137 en
dc.identifier.issue 8 en
dc.identifier.spage 852 en
dc.identifier.epage 855 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής