dc.contributor.author |
Spiliotis, M |
en |
dc.contributor.author |
Tsakiris, G |
en |
dc.date.accessioned |
2014-03-01T01:37:32Z |
|
dc.date.available |
2014-03-01T01:37:32Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0733-9429 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21548 |
|
dc.subject |
Flow resistance |
en |
dc.subject |
Pipe networks |
en |
dc.subject |
Water distribution systems |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Flow resistance |
en |
dc.subject.other |
Gradient algorithm |
en |
dc.subject.other |
Head loss |
en |
dc.subject.other |
Hydraulic heads |
en |
dc.subject.other |
Iterative procedures |
en |
dc.subject.other |
Newton-Raphson |
en |
dc.subject.other |
Pipe networks |
en |
dc.subject.other |
Q method |
en |
dc.subject.other |
Simplified algorithms |
en |
dc.subject.other |
Water distributions |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Inverse kinematics |
en |
dc.subject.other |
Jacobian matrices |
en |
dc.subject.other |
Local area networks |
en |
dc.subject.other |
Systems analysis |
en |
dc.subject.other |
Water distribution systems |
en |
dc.subject.other |
Newton-Raphson method |
en |
dc.subject.other |
accuracy assessment |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
discharge |
en |
dc.subject.other |
distribution system |
en |
dc.subject.other |
flow modeling |
en |
dc.subject.other |
fluid dynamics |
en |
dc.subject.other |
hydraulic conductivity |
en |
dc.subject.other |
hydraulic head |
en |
dc.subject.other |
hydraulics |
en |
dc.subject.other |
pipe flow |
en |
dc.title |
Water Distribution System Analysis: Newton-Raphson Method Revisited |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)HY.1943-7900.0000364 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000364 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Looped water distribution systems are conventionally analyzed using iterative methods such as Cross, Linear, Newton-Raphson, and Gradient algorithm methods. Depending on the unknown (hydraulic head or discharge), the methods are characterized as h or Q methods. This paper focuses on the h-Newton-Raphson method, which uses the Darcy-Weisbach head loss equation. The paper presents a procedure for improving the h-Newton-Raphson iterative procedure by directly calculating the discharge of each branch by using the Swamee and Jain equation. The proposed procedure leads to a simplified algorithm and more accurate determination of the Jacobian matrix, which accelerates the convergence of the algorithm. DOI: 10.1061/(ASCE)HY.1943-7900.0000364. (C) 2011 American Society of Civil Engineers. |
en |
heal.publisher |
ASCE-AMER SOC CIVIL ENGINEERS |
en |
heal.journalName |
Journal of Hydraulic Engineering |
en |
dc.identifier.doi |
10.1061/(ASCE)HY.1943-7900.0000364 |
en |
dc.identifier.isi |
ISI:000293530300008 |
en |
dc.identifier.volume |
137 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
852 |
en |
dc.identifier.epage |
855 |
en |