dc.contributor.author | Pandis, C | en |
dc.contributor.author | Spanoudaki, A | en |
dc.contributor.author | Kyritsis, A | en |
dc.contributor.author | Pissis, P | en |
dc.contributor.author | Hernandez, JCR | en |
dc.contributor.author | Gomez Ribelles, JL | en |
dc.contributor.author | Monleon Pradas, M | en |
dc.date.accessioned | 2014-03-01T01:37:33Z | |
dc.date.available | 2014-03-01T01:37:33Z | |
dc.date.issued | 2011 | en |
dc.identifier.issn | 0887-6266 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/21550 | |
dc.subject | diffusion | en |
dc.subject | hydrogels | en |
dc.subject | nanocomposites | en |
dc.subject | silica | en |
dc.subject | water sorption | en |
dc.subject.classification | Polymer Science | en |
dc.subject.other | Diffusion Coefficients | en |
dc.subject.other | Hydroxy groups | en |
dc.subject.other | Inorganic network | en |
dc.subject.other | Liquid Phase | en |
dc.subject.other | Mean values | en |
dc.subject.other | Nanocomposite hydrogels | en |
dc.subject.other | Organic networks | en |
dc.subject.other | Percolation thresholds | en |
dc.subject.other | Poly(2-hydroxyethyl acrylate) | en |
dc.subject.other | Room temperature | en |
dc.subject.other | Silica content | en |
dc.subject.other | Silica nanocomposites | en |
dc.subject.other | Vapor Phase | en |
dc.subject.other | Water activity | en |
dc.subject.other | Water molecule | en |
dc.subject.other | water sorption | en |
dc.subject.other | Water uptake | en |
dc.subject.other | Diffusion | en |
dc.subject.other | Hydrogels | en |
dc.subject.other | Nanocomposites | en |
dc.subject.other | Percolation (computer storage) | en |
dc.subject.other | Percolation (fluids) | en |
dc.subject.other | Percolation (solid state) | en |
dc.subject.other | Silica | en |
dc.subject.other | Sol-gel process | en |
dc.subject.other | Solvents | en |
dc.subject.other | Sorption | en |
dc.subject.other | Water vapor | en |
dc.subject.other | Water content | en |
dc.title | Water sorption characteristics of poly(2-hydroxyethyl acrylate)/silica nanocomposite hydrogels | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1002/polb.22225 | en |
heal.identifier.secondary | http://dx.doi.org/10.1002/polb.22225 | en |
heal.language | English | en |
heal.publicationDate | 2011 | en |
heal.abstract | Water sorption in hydrogels based on nanocomposites of poly(2-hydroxyethyl acrylate) (PHEA) and silica, prepared by simultaneous polymerization and sol-gel process, were studied gravimetrically over wide ranges of silica content, both below and above the percolation threshold of about 15% wt for the formation of a continuous inorganic network interpenetrated with the organic network. Measurements were performed at room temperature from the vapor phase, both at equilibrium and dynamic, for selected values of water activity αw between 0 and 0.95, and from the liquid phase. In the nanocomposite hydrogels, the overall water uptake from the vapor phase is practically the same as in pure PHEA below the percolation threshold, whereas it is reduced above the percolation threshold, in particular at high αw values where swelling becomes significant. Water clustering sets in at around 14 vol % (10 wt %) of water independently of composition, whereas the mean value of water molecules in a cluster decreases at high silica contents. In immersion experiments water uptake decreases as silica content increases to the percolation threshold of about 15 wt % and is then almost independent of composition. A scheme is proposed, which explains these results in terms of the existence of micelles, where a number of hydrophilic hydroxy groups are linked together, and their disentaglement by immersion into water. Diffusion coefficients of water depend on water content and are reduced on addition of silica above the percolation threshold. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Polymeric hydrogels are macromolecular networks able to absorb large water amounts without being dissolved. Their inherent high water uptake capability leads to decreased mechanical resistance in the swollen state but also yields a high water diffusion coefficient. The mechanical properties of the swollen gel are shown to be improved by inclusion of a silica phase within the polymer network. In the resulting nanocomposites, water uptake is observed to decrease as silica content increases, up to the percolation threshold of about 15% wt, above which it becomes almost independent of composition. The Diffusion coefficients of water are also reduced on addition of silica above the percolation threshold. Copyright © 2011 Wiley Periodicals, Inc. | en |
heal.publisher | WILEY-BLACKWELL | en |
heal.journalName | Journal of Polymer Science, Part B: Polymer Physics | en |
dc.identifier.doi | 10.1002/polb.22225 | en |
dc.identifier.isi | ISI:000288967200005 | en |
dc.identifier.volume | 49 | en |
dc.identifier.issue | 9 | en |
dc.identifier.spage | 657 | en |
dc.identifier.epage | 668 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |