dc.contributor.author |
Nikolopoulos, V |
en |
dc.contributor.author |
Mpardis, G |
en |
dc.contributor.author |
Giannoukos, I |
en |
dc.contributor.author |
Lykourentzou, I |
en |
dc.contributor.author |
Loumos, V |
en |
dc.date.accessioned |
2014-03-01T01:37:33Z |
|
dc.date.available |
2014-03-01T01:37:33Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1751-8806 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21553 |
|
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.other |
Agent based |
en |
dc.subject.other |
Broadband connection |
en |
dc.subject.other |
Computing software |
en |
dc.subject.other |
End consumers |
en |
dc.subject.other |
Energy information systems |
en |
dc.subject.other |
Energy measurements |
en |
dc.subject.other |
Energy profile |
en |
dc.subject.other |
Energy services |
en |
dc.subject.other |
Hypercube topology |
en |
dc.subject.other |
Interoperable technologies |
en |
dc.subject.other |
Knowledge system |
en |
dc.subject.other |
Multi-tier |
en |
dc.subject.other |
Parallel analysis |
en |
dc.subject.other |
Sequential decision process |
en |
dc.subject.other |
Software component |
en |
dc.subject.other |
Cloud computing |
en |
dc.subject.other |
Clustering algorithms |
en |
dc.subject.other |
Decision support systems |
en |
dc.subject.other |
Information management |
en |
dc.subject.other |
Information services |
en |
dc.subject.other |
Innovation |
en |
dc.subject.other |
Middleware |
en |
dc.subject.other |
Modems |
en |
dc.subject.other |
Software agents |
en |
dc.subject.other |
Interoperability |
en |
dc.title |
Web-based decision-support system methodology for smart provision of adaptive digital energy services over cloud technologies |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1049/iet-sen.2010.0008 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1049/iet-sen.2010.0008 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Energy information systems, which manage energy consumptions over internet, have been evolving over the past decade and can be considered as a part of a specialised sequential decision process, regarding the provision of personalised energy services to the community. The aim of this study is to develop and present an innovative decision-support system and cloud computing software methodology that brings together energy consultants, consumers, energy services procedures and modern web interoperable technologies. The authors propose a web-based knowledge system, using distributed cloud architecture and metering grids over ADSL broadband connections. By using some clustering algorithms and a web middleware, energy profiles over time are analysed and observed. The resulting clusters and centroids are projected and statistically analysed over time, producing a centroid-locus. Hypercube topology was used for efficient data management and software agent-based parallel analysis. The system operates efficiently on a multi-tier cloud-based middleware that generates in real-time using various service software components to the end consumers. The case study on real Greek energy measurements, for the first time in Greece, indicated a compact and efficient distributed procedure that could analyse and produce adaptive personalised information services. © 2011 The Institution of Engineering and Technology. |
en |
heal.publisher |
INST ENGINEERING TECHNOLOGY-IET |
en |
heal.journalName |
IET Software |
en |
dc.identifier.doi |
10.1049/iet-sen.2010.0008 |
en |
dc.identifier.isi |
ISI:000295621700004 |
en |
dc.identifier.volume |
5 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
454 |
en |
dc.identifier.epage |
465 |
en |