HEAL DSpace

Detection of coarse-grained unstable states of microscopic/stochastic systems: A timestepper-based iterative protocol

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsoumanis, AC en
dc.contributor.author Siettos, CI en
dc.date.accessioned 2014-03-01T01:37:35Z
dc.date.available 2014-03-01T01:37:35Z
dc.date.issued 2012 en
dc.identifier.issn 0924-090X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21561
dc.subject Bifurcation theory en
dc.subject Coarse timestepping en
dc.subject Complex systems en
dc.subject Large-scale systems en
dc.subject Nonlinear dynamics en
dc.subject Numerical detection of saddles en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Adaptive mechanism en
dc.subject.other Agent-based model en
dc.subject.other Bifurcation theory en
dc.subject.other Chord method en
dc.subject.other Coarse-grained en
dc.subject.other Complex dynamical systems en
dc.subject.other Iterative procedures en
dc.subject.other Kinetic Monte Carlo simulation en
dc.subject.other Large population en
dc.subject.other Macroscopic levels en
dc.subject.other Non-linear dynamics en
dc.subject.other Numerical detection of saddles en
dc.subject.other Open loops en
dc.subject.other Saddle node bifurcation en
dc.subject.other Saddle point en
dc.subject.other Surface-catalytic reaction en
dc.subject.other Time-stepping en
dc.subject.other Turning points en
dc.subject.other Unstable state en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Catalysis en
dc.subject.other Computer simulation en
dc.subject.other Dynamical systems en
dc.subject.other Dynamics en
dc.subject.other Large scale systems en
dc.subject.other Monte Carlo methods en
dc.subject.other Numerical methods en
dc.subject.other Partial differential equations en
dc.subject.other Surface reactions en
dc.subject.other Ordinary differential equations en
dc.title Detection of coarse-grained unstable states of microscopic/stochastic systems: A timestepper-based iterative protocol en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11071-011-9962-0 en
heal.identifier.secondary http://dx.doi.org/10.1007/s11071-011-9962-0 en
heal.language English en
heal.publicationDate 2012 en
heal.abstract We address an iterative procedure that can be used to detect coarse-grained hyperbolic unstable equilibria (saddle points) of microscopic simulators when no equations at the macroscopic level are available. The scheme is based on the concept of coarse timestepping (Kevrekidis et al. in Commun. Math. Sci. 1(4):715-762, 2003) incorporating an adaptive mechanism based on the chord method allowing the location of coarse-grained saddle points directly. Ultimately, it can be used in a consecutive manner to trace the coarse-grained open-loop saddle-node bifurcation diagrams of complex dynamical systems and large-scale systems of ordinary and/or partial differential equations. We illustrate the procedure through two indicative examples including (i) a kinetic Monte Carlo simulation (kMC) of simple surface catalytic reactions and (ii) a simple agent-based model, a financial caricature which is used to simulate the dynamics of buying and selling of a large population of interacting individuals in the presence of mimesis. Both models exhibit coarse-grained regular turning points which give rise to branches of saddle points. © 2011 Springer Science+Business Media B.V. en
heal.publisher SPRINGER en
heal.journalName Nonlinear Dynamics en
dc.identifier.doi 10.1007/s11071-011-9962-0 en
dc.identifier.isi ISI:000297544000008 en
dc.identifier.volume 67 en
dc.identifier.issue 1 en
dc.identifier.spage 103 en
dc.identifier.epage 117 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής