dc.contributor.author |
PSARAFTIS, H |
en |
dc.date.accessioned |
2014-03-01T01:38:28Z |
|
dc.date.available |
2014-03-01T01:38:28Z |
|
dc.date.issued |
1983 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22184 |
|
dc.subject |
Approximate Algorithm |
en |
dc.subject |
Combinatorial Problems |
en |
dc.subject |
Computational Complexity |
en |
dc.subject |
Minimum Spanning Tree |
en |
dc.subject |
Routing Algorithm |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Time Constraint |
en |
dc.subject |
Transport System |
en |
dc.subject |
Vehicle Routing Problem |
en |
dc.subject |
dial a ride problem |
en |
dc.subject |
dynamic pro gramming |
en |
dc.subject |
Total Length |
en |
dc.title |
Analysis of an O(N2) heuristic for the single vehicle many-to-many Euclidean dial-a-ride problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0191-2615(83)90041-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0191-2615(83)90041-3 |
en |
heal.publicationDate |
1983 |
en |
heal.abstract |
We develop an O(N') heuristic to solve the single vehicle many-to-many Euclidean Dial-A-Ride problem. The heuristic is based on the Minimum Spanning Tree of the nodes of the problem. The algorithm's worst case performance is four times the length of the optimal Dial-A-Ride tour. An analysis of the algorithm's average performance reveals that in terms of sizes of single-vehicle problems |
en |
heal.journalName |
Transportation Research Part B-methodological |
en |
dc.identifier.doi |
10.1016/0191-2615(83)90041-3 |
en |