HEAL DSpace

Three-dimensional forced harmonic vibrations of a uniform cantilever beam with -n- concentrated masses

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theocaris, PS en
dc.contributor.author Panayotounakos, DE en
dc.date.accessioned 2014-03-01T01:38:30Z
dc.date.available 2014-03-01T01:38:30Z
dc.date.issued 1983 en
dc.identifier.issn 02617277 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/22216
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-48749148029&partnerID=40&md5=41d2281c1269e01f2a383215e1fe6c99 en
dc.title Three-dimensional forced harmonic vibrations of a uniform cantilever beam with -n- concentrated masses en
heal.type journalArticle en
heal.publicationDate 1983 en
heal.abstract In this investigation an exact solution for the problem of three-dimensional forced harmonic vibrations of a straight uniform cantilever beam with rotational and translational springs at its support, carrying n concentrated masses, is presented. The effects of rotatory inertias, as well as of transverse shear deformations and of a constant compressive force, acting on the free end of the beam, have also been included in the analysis. The natural frequencies and the eigenfunctions of the system are calculated, based on the Laplace transform and on generalized functions. Furthermore, the general solution of the linear partial differential equation of the fourth order with respect to x and time t, derived from this analysis, which governs the dynamic equilibrium of the beam, was achieved. Finally, a special case is examined and the resulting solutions are in agreement with existing special solutions of this particular problem. © 1983. en
heal.journalName International Journal of Soil Dynamics and Earthquake Engineering en
dc.identifier.volume 2 en
dc.identifier.issue 2 en
dc.identifier.spage 83 en
dc.identifier.epage 91 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής