dc.contributor.author |
Papadimitriou, CH |
en |
dc.date.accessioned |
2014-03-01T01:38:48Z |
|
dc.date.available |
2014-03-01T01:38:48Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.issn |
00200190 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22378 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0022076833&partnerID=40&md5=db67eb8c8af5365e491212d22338e71c |
en |
dc.subject |
path planning |
en |
dc.subject |
polyhedral obstacle |
en |
dc.subject |
Shortest path |
en |
dc.subject.other |
COMPUTER PROGRAMMING - Algorithms |
en |
dc.subject.other |
PATH PLANNING |
en |
dc.subject.other |
SHORTEST-PATH MOTION |
en |
dc.subject.other |
ROBOTICS |
en |
dc.title |
An algorithm for shortest-path motion in three dimensions |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
We describe a fully polynomial approximation scheme for the problem of finding the shortest distance between two points in three-dimensional space in the presence of polyhedral obstacles. The fastest algorithm known for the exact solution of this problem is doubly exponential. © 1985. |
en |
heal.journalName |
Information Processing Letters |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
259 |
en |
dc.identifier.epage |
263 |
en |