dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:38:49Z |
|
dc.date.available |
2014-03-01T01:38:49Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.issn |
00198528 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22392 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0022282850&partnerID=40&md5=f9c7db0761d18f609b7141b4f53b3a55 |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Differential Equations |
en |
dc.subject.other |
ARBITRARY EXTERNAL CONTINUOUS LOADING |
en |
dc.subject.other |
MEMBRANE SOLUTIONS |
en |
dc.subject.other |
SHELLS OF REVOLUTION |
en |
dc.subject.other |
DOMES AND SHELLS |
en |
dc.title |
MEMBRANE SOLUTIONS FOR SHELLS OF REVOLUTION SUBJECTED TO ARBITRARY EXTERNAL CONTINUOUS LOADING. |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
In this paper, the exact or closed-form solutions of the differential equations governing the equilibrium of a thin elastic shell of revolution, subjected to an arbitrary external continuous loading, are developed on the basis of the membrane theory. These solutions are given for various types of shells that are useful in engineering practice. As applications of the proposed methodology and the obtained solutions, some interesting cases of shells of revolution for civil engineering structures are examined. The derived results are in agreement with those given in previous publications. |
en |
heal.journalName |
Industrial Mathematics |
en |
dc.identifier.volume |
35 |
en |
dc.identifier.issue |
pt 1 |
en |
dc.identifier.spage |
49 |
en |
dc.identifier.epage |
67 |
en |