dc.contributor.author |
GANGARAO, H |
en |
dc.contributor.author |
SPYRAKOS, C |
en |
dc.date.accessioned |
2014-03-01T01:39:00Z |
|
dc.date.available |
2014-03-01T01:39:00Z |
|
dc.date.issued |
1987 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22538 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Boundary Value Problem |
en |
dc.subject |
Differential Equation |
en |
dc.subject |
Efficient Algorithm |
en |
dc.subject |
Engineering System |
en |
dc.subject |
Fourier Series |
en |
dc.subject |
Hyperbolic Partial Differential Equation |
en |
dc.subject |
Initial Boundary Value Problem |
en |
dc.subject |
Satisfiability |
en |
dc.title |
A series solution algorithm for initial boundary-value problems with variable properties |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0045-7949(87)90006-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0045-7949(87)90006-X |
en |
heal.publicationDate |
1987 |
en |
heal.abstract |
Abstract-A multiple infinite trigonometric,cum,polynomial,series method,for solving initial-boundary value problems,governed,by hyperbolic differential equations with variable coefficients is developed. The method,proposed,herein can be easily applied to a broad class of engineering systems including those cases where boundary conditions may vary with time. In the proposed mathematical technique, the solution form is assumed as a combination of infinite Fourier series and polynomial series |
en |
heal.journalName |
Computers & Structures |
en |
dc.identifier.doi |
10.1016/0045-7949(87)90006-X |
en |