dc.contributor.author |
MARAGOS, P |
en |
dc.contributor.author |
SCHAFER, R |
en |
dc.date.accessioned |
2014-03-01T01:39:06Z |
|
dc.date.available |
2014-03-01T01:39:06Z |
|
dc.date.issued |
1987 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22567 |
|
dc.subject |
Impulse Response |
en |
dc.subject |
Kernel Function |
en |
dc.subject |
Linear Filtering |
en |
dc.subject |
Mathematical Morphology |
en |
dc.subject |
Morphological Operation |
en |
dc.subject |
Theoretical Analysis |
en |
dc.subject |
Translation Invariant |
en |
dc.subject |
Linear Shift Invariant |
en |
dc.title |
Morphological filters--Part I: Their set-theoretic analysis and relations to linear shift-invariant filters |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TASSP.1987.1165259 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TASSP.1987.1165259 |
en |
heal.publicationDate |
1987 |
en |
heal.abstract |
This paper examines the set-theoretic interpretation of morphological filters in the framework of mathematical morphology and introduces the representation of classical linear filters in terms of morphological correlations, which involve supremum/infimum operations and additions. Binary signals are classified as sets, and multilevel signals as functions. Two set-theoretic representations of signals are reviewed. Filters are classified as set-processing (SP) or function-processing |
en |
heal.journalName |
IEEE Transactions on Signal Processing |
en |
dc.identifier.doi |
10.1109/TASSP.1987.1165259 |
en |