dc.contributor.author |
Maragos, P |
en |
dc.contributor.author |
Schafer, R |
en |
dc.date.accessioned |
2014-03-01T01:39:06Z |
|
dc.date.available |
2014-03-01T01:39:06Z |
|
dc.date.issued |
1987 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22568 |
|
dc.subject |
Boolean Function |
en |
dc.subject |
Fixed Point |
en |
dc.subject |
Impulse Noise |
en |
dc.subject |
Local Minima |
en |
dc.subject |
Mathematical Morphology |
en |
dc.subject |
Median Filter |
en |
dc.subject |
Order Statistic |
en |
dc.subject |
Translation Invariant |
en |
dc.subject |
Sum of Products |
en |
dc.title |
Morphological filters--Part II: Their relations to median, order-statistic, and stack filters |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TASSP.1987.1165254 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TASSP.1987.1165254 |
en |
heal.publicationDate |
1987 |
en |
heal.abstract |
This paper extends the theory of median, order-statistic (OS), and stack filters by using mathematical morphology to analyze them and by relating them to those morphological erosions, dilations, openings, closings, and open-closings that commute with thresholding. The max-min representation of OS filters is introduced by showing that any median or other OS filter is equal to a maximum of erosions |
en |
heal.journalName |
IEEE Transactions on Signal Processing |
en |
dc.identifier.doi |
10.1109/TASSP.1987.1165254 |
en |