dc.contributor.author |
Papageorgiou, N |
en |
dc.date.accessioned |
2014-03-01T01:39:21Z |
|
dc.date.available |
2014-03-01T01:39:21Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22727 |
|
dc.subject |
Best Approximation |
en |
dc.subject |
Differential Inclusion |
en |
dc.subject |
Fixed Point |
en |
dc.subject |
Fixed Point Theorem |
en |
dc.subject |
flxed point |
en |
dc.subject |
Random Fixed Point |
en |
dc.subject |
Random Set |
en |
dc.subject |
Satisfiability |
en |
dc.title |
Random fixed points and random differential inclusions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/S0161171288000663 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/S0161171288000663 |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
In this paper, first, we study random best approximations to random sets, using fixed point techniques, obtaining this way stochastic analogues of earlier deterministic results by Broder-Petryshyn, KyFan and Reich. Then we prove two fixed point theorems for random mmltifunctlons with stochastic domain that satisfy certain tangential conditions. Finally we consider a random differential inclusion wth upper semlcontinuous orlentor field |
en |
heal.journalName |
International Journal of Mathematics and Mathematical Sciences |
en |
dc.identifier.doi |
10.1155/S0161171288000663 |
en |