dc.contributor.author |
Magoulas, K |
en |
dc.contributor.author |
Kouris, DMarinos |
en |
dc.contributor.author |
Lygeros, A |
en |
dc.date.accessioned |
2014-03-01T01:39:23Z |
|
dc.date.available |
2014-03-01T01:39:23Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
00301388 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22747 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0024050291&partnerID=40&md5=b0e5f09664763cf6a5cc9a470d7a9db7 |
en |
dc.subject.other |
MATHEMATICAL PROGRAMMING, LINEAR |
en |
dc.subject.other |
PRODUCTION CONTROL - Optimization |
en |
dc.subject.other |
GASOLINE BLENDING |
en |
dc.subject.other |
LINEAR PROGRAMMING/LP |
en |
dc.subject.other |
GASOLINE |
en |
dc.title |
ACTUAL BLENDING LINEAR-PROGRAMMING MODEL IS DEVELOPED. |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
Linear programming (LP) is useful to optimize gasoline blending problems. The LP mathematically represents the blending problem, taking into account the various blend components and their properties, the availability or inventory of the components, and the economic consequences associated with each particular blend. This last article of a two-part series shows how an LP model is set up for an actual gasoline blending problem. Its use is then demonstrated by two case studies that optimize catalytic reformer and fluid catalytic cracker (FCC) severities and lead level, and unleaded gasoline production. 4 Refs. |
en |
heal.journalName |
Oil and Gas Journal |
en |
dc.identifier.volume |
86 |
en |
dc.identifier.issue |
29 |
en |
dc.identifier.spage |
44 |
en |
dc.identifier.epage |
48 |
en |