dc.contributor.author |
Sapidis, NS |
en |
dc.contributor.author |
Kaklis, PD |
en |
dc.date.accessioned |
2014-03-01T01:39:23Z |
|
dc.date.available |
2014-03-01T01:39:23Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
01678396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22749 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0024047722&partnerID=40&md5=4387292643be8099527084c295cd9fc2 |
en |
dc.subject |
convexity- (monotonicity-) preserving interpolants |
en |
dc.subject |
convexity-admissible data sets |
en |
dc.subject |
Exponential spline in tension |
en |
dc.subject.other |
COMPUTER AIDED DESIGN |
en |
dc.subject.other |
COMPUTER AIDED GEOMETRIC DESIGN |
en |
dc.subject.other |
INTERPOLATORY SPLINE IN TENSION |
en |
dc.subject.other |
MONOTONICITY-PRESERVING SPLINES |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES |
en |
dc.title |
An algorithm for constructing convexity and monotonicity-preserving splines in tension |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
In this paper we consider the problem of constructing an interpolatory spline in tension that matches the convexity and monotonicity properties of the data. In this connection, an algorithm is presented relying on the asymptotic properties of the splines in tension and making use of the generalized Newton-Raphson methods developed by Ben-Israel. The numerical performance of the proposed algorithm is tested and discussed for several data sets. © 1988. |
en |
heal.journalName |
Computer Aided Geometric Design |
en |
dc.identifier.volume |
5 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
127 |
en |
dc.identifier.epage |
137 |
en |