dc.contributor.author |
Kounadis, AN |
en |
dc.contributor.author |
Mallis, J |
en |
dc.date.accessioned |
2014-03-01T01:39:24Z |
|
dc.date.available |
2014-03-01T01:39:24Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
00198528 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22759 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-18844472083&partnerID=40&md5=4a1d4812ac0d0dd1173c98e6d14605b2 |
en |
dc.subject.other |
Mathematical Techniques--Iterative Methods |
en |
dc.subject.other |
Structural Design |
en |
dc.subject.other |
Approximation Techniques |
en |
dc.subject.other |
Convergence |
en |
dc.subject.other |
Large Deflection Analysis |
en |
dc.subject.other |
Thin Circular Plates |
en |
dc.subject.other |
Plates |
en |
dc.title |
Efficient approximate techniques for the large-deflection analysis of circular plates |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
An approximate solution methodology for the large-deflection analysis of a thin circular plate rigidly clamped at its edge and subjected to a uniformly distributed (axisymmetric) load is developed. The solution technique is based on an efficient and reliable iterative scheme. Convergence and uniqueness of the approximate technique are thoroughly discussed. Another simplified method based on the foregoing technique, which is very appropriate for structural design purposes, is also presented. The numerical results of this analysis are compared with other solutions. |
en |
heal.journalName |
Industrial Mathematics |
en |
dc.identifier.volume |
38 pt 1 |
en |
dc.identifier.spage |
49 |
en |
dc.identifier.epage |
69 |
en |