dc.contributor.author |
Kuo Mo, Hsiao |
en |
dc.contributor.author |
Fang Yu, Hou |
en |
dc.contributor.author |
Spiliopoulos, KV |
en |
dc.date.accessioned |
2014-03-01T01:39:25Z |
|
dc.date.available |
2014-03-01T01:39:25Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
00457949 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22772 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0023839604&partnerID=40&md5=8dcabeb46189b57568a6918990b7f6fe |
en |
dc.subject.other |
BEAMS AND GIRDERS - Theory |
en |
dc.subject.other |
ELASTOPLASTICITY - Analysis |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Numerical Methods |
en |
dc.subject.other |
STRESSES - Strain |
en |
dc.subject.other |
ELASTO-PLASTIC FRAMES |
en |
dc.subject.other |
LARGE DISPLACEMENT ANALYSIS |
en |
dc.subject.other |
STRUCTURAL FRAMES |
en |
dc.title |
Large displacement analysis of elasto-plastic frames |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
A simple and practical formulation of beam element for the large displacement analysis of elasto-plastic plane frames is presented. A corotational formulation combined with small deflection beam theory with the inclusion of the effect of axial force is adopted. A body attached coordinate is used to distinguish between rigid body and deformational rotations. The deformational nodal rotational angles are assumed to be small, and the membrane strain along the deformed beam axis is assumed to be constant. The element strain and stress are calculated using the total deformational nodal rotations in the body attached coordinate. The element internal nodal force vector is obtained from the virtual work principle. The element stiffness matrix is established from the derivative of the element internal nodal force vector with respect to the element nodal displacement vector. An incremental-iterative method based on the Newton-Raphson method combined with constant arc length control method is employed for the solution of the nonlinear equilibrium equations. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method. © 1988. |
en |
heal.journalName |
Computers and Structures |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
627 |
en |
dc.identifier.epage |
633 |
en |