dc.contributor.author |
PAPADRAKAKIS, M |
en |
dc.contributor.author |
GANTES, C |
en |
dc.date.accessioned |
2014-03-01T01:39:32Z |
|
dc.date.available |
2014-03-01T01:39:32Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22855 |
|
dc.relation.uri |
http://users.ntua.gr/chgantes/files/Preconditioned_Conjugate_and_Secant-Newton_Methods_for_Non-Linear_Problems.pdf |
en |
dc.relation.uri |
http://users.civil.ntua.gr/chgantes/files/Preconditioned_Conjugate_and_Secant-Newton_Methods_for_Non-Linear_Problems.pdf |
en |
dc.subject |
Conjugate Gradient |
en |
dc.subject |
Finite Element Method |
en |
dc.subject |
Line Search |
en |
dc.subject |
Linear System of Equations |
en |
dc.subject |
Newton Method |
en |
dc.subject |
Preconditioned Conjugate Gradient |
en |
dc.subject |
quasi-newton method |
en |
dc.title |
IONED CONJUGATE AND SECANT-NEWTON NON-LINEAR PROBLEMS |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
SUMMARY The preconditioned conjugate gradient (CG) method is becoming accepted as a powerful tool for solving the linear systems of equations resulting from the application of the finite element method. Applications of the non-linear algorithm are mainly confined to the diagonally scaled CG. In this study the coupling of preconditioning techniques with non-linear versions of the conjugate gradient and quasi-Newton |
en |