dc.contributor.author |
Papageorgiou, N |
en |
dc.date.accessioned |
2014-03-01T01:39:32Z |
|
dc.date.available |
2014-03-01T01:39:32Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22865 |
|
dc.subject |
Infinite Dimensional System |
en |
dc.subject |
Linear System |
en |
dc.subject |
Optimal Control |
en |
dc.subject |
Optimal Control Problem |
en |
dc.subject |
Optimization Problem |
en |
dc.subject |
Partial Differential Equation |
en |
dc.subject |
semilinear evolution equations |
en |
dc.title |
On the optimal control and relaxation of nonlinear infinite dimensional systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01790352 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01790352 |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
Summary In this paper we study optimal control problems for infinite dimensional systems governed by a semilinear evolution equation. First under appropriate convexity and growth conditions, we establish the existence of optimal pairs. Then we drop the convexity hypothesis and we pass to a larger system known as the « relaxed system ». We show that this system has a |
en |
heal.journalName |
Annali Di Matematica Pura Ed Applicata |
en |
dc.identifier.doi |
10.1007/BF01790352 |
en |