dc.contributor.author |
Maroulas, J |
en |
dc.date.accessioned |
2014-03-01T01:39:36Z |
|
dc.date.available |
2014-03-01T01:39:36Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
00207179 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22895 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0024613092&partnerID=40&md5=aa035d1903c41af8962c0ab132d08500 |
en |
dc.subject.other |
Signal Filtering and Prediction |
en |
dc.subject.other |
Contractive Algorithms |
en |
dc.subject.other |
Hankel Matrices |
en |
dc.subject.other |
Levinson Algorithm |
en |
dc.subject.other |
Minimal State Space Dimension |
en |
dc.subject.other |
Partial Realization |
en |
dc.subject.other |
Mathematical Techniques |
en |
dc.title |
Contractive partial realization |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
Using Hankel matrices the minimal dimension of a partial realization and a contractive algorithm is defined. This theorem is related to the results of I. Gohberg et al. (1987) which are referred to on a set of matrices. This result will be compared with the well-known Levinson algorithm. For real parameters a contractive realization is presented and is illustrated by two examples, showing in addition that it is not unique as was expected in C. Foias and A. Frazho (1983). |
en |
heal.journalName |
International Journal of Control |
en |
dc.identifier.volume |
49 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
681 |
en |
dc.identifier.epage |
689 |
en |