dc.contributor.author |
Kounadis, AN |
en |
dc.contributor.author |
Mahrenholtz, O |
en |
dc.date.accessioned |
2014-03-01T01:39:36Z |
|
dc.date.available |
2014-03-01T01:39:36Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
09344373 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22897 |
|
dc.title |
Divergence instability conditions in the optimum design of nonlinear elastic systems under follower loads |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01637336 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01637336 |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
A nonlinearly elastic system with two degrees of freedom under nonconservative, follower-type compressive loading is considered. Using a general formulation, a thorough parametric discussion of the critical, prebuckling and postbuckling, large displacement response is comprehensively presented. The predominant effects on the nonlinear divergence instability of the material nonlinearity as well as of the loading parameter defining the degree of nonconservativeness are completely revealed. Necessary and sufficient conditions for the existence of regions of divergence instability are properly established. It was found that the system loses its stability through divergence for the entire interval of variation of the nonconservativeness parameter; thus its buckling load can be established by means of static methods of analysis. The maximum load-carrying capacity corresponds to a certain value of the nonconservativeness parameter for which a sudden jump (discontinuity) in the buckling load occurs. Finally, an optimum design is established for all possible values of the material and nonconservativeness parameters. © 1989 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Structural Optimization |
en |
dc.identifier.doi |
10.1007/BF01637336 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
163 |
en |
dc.identifier.epage |
169 |
en |