dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:39:37Z |
|
dc.date.available |
2014-03-01T01:39:37Z |
|
dc.date.issued |
1989 |
en |
dc.identifier.issn |
00198528 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22901 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0024887983&partnerID=40&md5=447f27f3c6a2420a116377ce51797daa |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Mathematical Techniques--Differential Equations |
en |
dc.subject.other |
Structural Analysis |
en |
dc.subject.other |
Coordinate Systems |
en |
dc.subject.other |
Equilibrium Equations |
en |
dc.subject.other |
Domes and Shells |
en |
dc.title |
Equilibrium equations of thin elastic shells referred to a generic oblique curvilinear coordinate system |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1989 |
en |
heal.abstract |
A generalization of the well-known theory of thin elastic shells is obtained by deriving the differential equations of equilibrium with respect to a generic oblique curvilinear coordinate system. The resulting new equations are transformed to equivalent ones with respect to certain types of parametric curves on the middle surface of the shell that are particularly convenient for the static analysis of shells of practical interest in modern civil engineering structures. Two applications of the above theory are presented that concern the closed-form solutions of the membrane equilibrium differential equations for the hyperbolic-paraboloid and the right-helicoid shells. An appropriate choice of the parametric curves for the coordinate system permits direct integration of the complicated equations describing these cases. |
en |
heal.journalName |
Industrial Mathematics |
en |
dc.identifier.volume |
39 pt 1 |
en |
dc.identifier.spage |
17 |
en |
dc.identifier.epage |
36 |
en |