HEAL DSpace

Equilibrium equations of thin elastic shells referred to a generic oblique curvilinear coordinate system

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panayotounakos, DE en
dc.contributor.author Theocaris, PS en
dc.date.accessioned 2014-03-01T01:39:37Z
dc.date.available 2014-03-01T01:39:37Z
dc.date.issued 1989 en
dc.identifier.issn 00198528 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/22901
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0024887983&partnerID=40&md5=447f27f3c6a2420a116377ce51797daa en
dc.subject.other Elasticity en
dc.subject.other Mathematical Techniques--Differential Equations en
dc.subject.other Structural Analysis en
dc.subject.other Coordinate Systems en
dc.subject.other Equilibrium Equations en
dc.subject.other Domes and Shells en
dc.title Equilibrium equations of thin elastic shells referred to a generic oblique curvilinear coordinate system en
heal.type journalArticle en
heal.publicationDate 1989 en
heal.abstract A generalization of the well-known theory of thin elastic shells is obtained by deriving the differential equations of equilibrium with respect to a generic oblique curvilinear coordinate system. The resulting new equations are transformed to equivalent ones with respect to certain types of parametric curves on the middle surface of the shell that are particularly convenient for the static analysis of shells of practical interest in modern civil engineering structures. Two applications of the above theory are presented that concern the closed-form solutions of the membrane equilibrium differential equations for the hyperbolic-paraboloid and the right-helicoid shells. An appropriate choice of the parametric curves for the coordinate system permits direct integration of the complicated equations describing these cases. en
heal.journalName Industrial Mathematics en
dc.identifier.volume 39 pt 1 en
dc.identifier.spage 17 en
dc.identifier.epage 36 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής