dc.contributor.author |
Maragos, P |
en |
dc.contributor.author |
Schafer, R |
en |
dc.date.accessioned |
2014-03-01T01:39:50Z |
|
dc.date.available |
2014-03-01T01:39:50Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22989 |
|
dc.subject |
Feature Extraction |
en |
dc.subject |
Geometric Structure |
en |
dc.subject |
Image Analysis |
en |
dc.subject |
Large Classes |
en |
dc.subject |
Mathematical Morphology |
en |
dc.subject |
Morphological Operation |
en |
dc.subject |
Multidimensional Signal Processing |
en |
dc.subject |
Nonlinear Filter |
en |
dc.subject |
Representation Theorem |
en |
dc.subject |
Shape Representation |
en |
dc.subject |
Size Distribution |
en |
dc.title |
Morphological systems for multidimensional signal processing |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/5.54808 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/5.54808 |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
The basic theory and applications of a set-theoretic approach to image analysis called mathematical morphology are reviewed. The goals are to show how the concepts of mathematical morphology geometrical structure in signals to illuminate the ways that morphological systems can enrich the theory and applications of multidimensional signal processing. The topics covered include: applications to nonlinear filtering (morphological and rank-order |
en |
heal.journalName |
Proceedings of The IEEE |
en |
dc.identifier.doi |
10.1109/5.54808 |
en |