dc.contributor.author |
Papageorgiou, N |
en |
dc.date.accessioned |
2014-03-01T01:39:51Z |
|
dc.date.available |
2014-03-01T01:39:51Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/22993 |
|
dc.subject |
Convex Function |
en |
dc.subject |
Hilbert Space |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Strong Solution |
en |
dc.title |
Nonconvex and nonmonotone perturbations of evolution inclusions of subdifferential type |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01946854 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01946854 |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
In this paper we prove the existence of strong solutions for evolution inclusions of the form −<img src="/fulltext-image.asp?format=htmlnonpaginated&src=XV79473684817718_html\10998_2005_Article_BF01946854_TeX2GIFIE1.gif" border="0" alt="$$\dot x$$" />(t) ∈ ∂ϕ(x(t))+F(t,x)) defined in a separable Hilbert space, where ∂ϕ(·) denotes the subdifferential of a proper, closed, convex function ϕ(·) andF(t,x) is a multivalued nonconvex, nonmonotone perturbation satisfying a general growth condition. |
en |
heal.journalName |
Periodica Mathematica Hungarica |
en |
dc.identifier.doi |
10.1007/BF01946854 |
en |