dc.contributor.author | Voutsinas, S | en |
dc.contributor.author | Bergeles, G | en |
dc.date.accessioned | 2014-03-01T01:40:00Z | |
dc.date.available | 2014-03-01T01:40:00Z | |
dc.date.issued | 1990 | en |
dc.identifier.issn | 0307904X | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/23050 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-38249018255&partnerID=40&md5=ae00ed326fa7abb6c866ced8a231acf5 | en |
dc.subject | boundary element method | en |
dc.subject | potential flow | en |
dc.subject | quadrature | en |
dc.subject | singular integrals | en |
dc.title | Numerical calculation of singular integrals appearing in three-dimensional potential flow problems | en |
heal.type | journalArticle | en |
heal.publicationDate | 1990 | en |
heal.abstract | Two approximate methods for calculating singular integrals appearing in the numerical solution of three-dimensional potential flow problems are presented. The first method is a self-adaptive, fully numerical method based on special copy formulas of Gaussian quadrature rules. The singularity is treated by refining the partitions of the copy formula in the vicinity of the singular point. The second method is a semianalytic method based on asymptotic considerations. Under the small curvature hypothesis, asymptotic expansions are derived for the integrals that are involved in the calculation of the scalar potential, the velocity as well as the deformation field induced from curved quadrilateral surface elements. Compared to other methods, the proposed integration schemes, when applied to practical flow field calculations, require less computational effort. © 1990. | en |
heal.journalName | Applied Mathematical Modelling | en |
dc.identifier.volume | 14 | en |
dc.identifier.issue | 12 | en |
dc.identifier.spage | 618 | en |
dc.identifier.epage | 629 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |