HEAL DSpace

Numerical calculation of singular integrals appearing in three-dimensional potential flow problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Voutsinas, S en
dc.contributor.author Bergeles, G en
dc.date.accessioned 2014-03-01T01:40:00Z
dc.date.available 2014-03-01T01:40:00Z
dc.date.issued 1990 en
dc.identifier.issn 0307904X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/23050
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-38249018255&partnerID=40&md5=ae00ed326fa7abb6c866ced8a231acf5 en
dc.subject boundary element method en
dc.subject potential flow en
dc.subject quadrature en
dc.subject singular integrals en
dc.title Numerical calculation of singular integrals appearing in three-dimensional potential flow problems en
heal.type journalArticle en
heal.publicationDate 1990 en
heal.abstract Two approximate methods for calculating singular integrals appearing in the numerical solution of three-dimensional potential flow problems are presented. The first method is a self-adaptive, fully numerical method based on special copy formulas of Gaussian quadrature rules. The singularity is treated by refining the partitions of the copy formula in the vicinity of the singular point. The second method is a semianalytic method based on asymptotic considerations. Under the small curvature hypothesis, asymptotic expansions are derived for the integrals that are involved in the calculation of the scalar potential, the velocity as well as the deformation field induced from curved quadrilateral surface elements. Compared to other methods, the proposed integration schemes, when applied to practical flow field calculations, require less computational effort. © 1990. en
heal.journalName Applied Mathematical Modelling en
dc.identifier.volume 14 en
dc.identifier.issue 12 en
dc.identifier.spage 618 en
dc.identifier.epage 629 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής