dc.contributor.author |
SOLOVYEV, AD |
en |
dc.contributor.author |
KONSTANT, DG |
en |
dc.date.accessioned |
2014-03-01T01:40:54Z |
|
dc.date.available |
2014-03-01T01:40:54Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
0021-9002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23308 |
|
dc.subject |
RELIABILITY ASYMPTOTIC ANALYSIS |
en |
dc.subject |
REGENERATIVE PROCESS |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.title |
RELIABILITY ESTIMATION OF A COMPLEX RENEWABLE SYSTEM WITH AN UNBOUNDED NUMBER OF REPAIR UNITS |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
In this study an asymptotical analysis of the reliability of a complex renewable system with an unbounded number of repair units is provided. The system state is given by a binary vector e(t) = [e1(t),..., e(n)(t)], e(i)(t) = 0(1), if at moment t the ith element is failure-free (failed). We assume that at the state e the ith element has failure intensity lambda-i(e). At the instant of failure of every element the renewal work begins and the renewal time has distribution function G(i)(t). Let E} be the set of failed system states. The goal of this study is the asymptotic estimation of the distribution of the time until the first system failure, tau = inf{t:e(t) is-an-element-of E}\e(0) = 0BAR}. |
en |
heal.publisher |
APPLIED PROBABILITY TRUST |
en |
heal.journalName |
JOURNAL OF APPLIED PROBABILITY |
en |
dc.identifier.isi |
ISI:A1991GV29700012 |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
833 |
en |
dc.identifier.epage |
842 |
en |