HEAL DSpace

A fourth-order Bessel fitting method for the numerical solution of the Schrödinger equation

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Simos, TE en
dc.contributor.author Raptis, AD en
dc.date.accessioned 2014-03-01T01:41:11Z
dc.date.available 2014-03-01T01:41:11Z
dc.date.issued 1992 en
dc.identifier.issn 03770427 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/23414
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0001515713&partnerID=40&md5=320cd6ac3cb607027d0913d686791453 en
dc.subject Bessel and Neumann functions en
dc.subject Bessel fitting method en
dc.subject phase shift problem en
dc.subject Schrödinger equation en
dc.title A fourth-order Bessel fitting method for the numerical solution of the Schrödinger equation en
heal.type journalArticle en
heal.publicationDate 1992 en
heal.abstract A new fourth-order method is developed for the numerical integration of the one-dimensional radial Schrödinger equation. This method integrates Bessel and Neumann functions exactly. It is shown that, for large r, this new formula is much more accurate and rapid than the Bessel fitting method of second order which is developed by Raptis and Cash (1987). The benefit of using this new approach is demonstrated by considering some numerical examples based on the Lenard-Jones potential. © 1992. en
heal.journalName Journal of Computational and Applied Mathematics en
dc.identifier.volume 43 en
dc.identifier.issue 3 en
dc.identifier.spage 313 en
dc.identifier.epage 322 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record