HEAL DSpace

New model for long-term stochastic analysis and prediction. Part I. Theoretical background

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Athanassoulis, GA en
dc.contributor.author Vranas, PB en
dc.contributor.author Soukissian, TH en
dc.date.accessioned 2014-03-01T01:41:15Z
dc.date.available 2014-03-01T01:41:15Z
dc.date.issued 1992 en
dc.identifier.issn 00224502 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/23437
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0026838638&partnerID=40&md5=a9dfafe93eababc3e10974fed1241a27 en
dc.subject.other Mathematical Models en
dc.subject.other Probability en
dc.subject.other Structural Analysis--Dynamic Response en
dc.subject.other Water Waves en
dc.subject.other Probabilistic Characteristics en
dc.subject.other Random Function en
dc.subject.other Sea Waves en
dc.subject.other Spectral Characteristics en
dc.subject.other Stochastic Analysis en
dc.subject.other Successive Sea States en
dc.subject.other Ships en
dc.title New model for long-term stochastic analysis and prediction. Part I. Theoretical background en
heal.type journalArticle en
heal.publicationDate 1992 en
heal.abstract A new approach for calculating the long-term statistics of sea waves is proposed. A rational long-term stochastic model is introduced which recognizes that the wave climate at a given site in the ocean consists of a random succession of individual sea sates, which sea state possessing its own duration and intensity. This model treats the sea-surface evalation as a random function of a 'fast' time variable, and the time history of the spectral characteristics of the successive sea states as a random function of a 'slow' time variable. By developing an appropriate conceptual framework, it becomes possible to express various probabilistic characteristics of the sea-surface elevation, which are sensible only in the fast-time scale, in terms of the statistics of sea-states duration and intensity, which is meaningful only in the slow-time scale. As an example, we study the random quantity Mu(T) = 'number of maxima of the sea-surface elevation lying above the level u and occurring during a long-term time period [0,T].' Exploiting the proposed framework, it is shown that, under certain clearly defined assumptions, Mu(T) can be given the structure of a renewal-reward (cumulative) process, whose interarrival times correspond to the duration of successive sea states. Thus, using renewal theory, the complete characterization of the probability structure of Mu(T) is obtained. As a consequence, the long-term probability distribution function of the individual wave height is rigorously defined and calculated. The relation of the present results with corresponding ones previously obtained is thoroughly discussed. The proposed model can be extended twofold; either by replacing some of the simplifying assumptions by more realistic ones, or by extending the model for treating the corresponding problems for ship and structures responses. en
heal.journalName Journal of Ship Research en
dc.identifier.volume 36 en
dc.identifier.issue 1 en
dc.identifier.spage 1 en
dc.identifier.epage 16 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής