dc.contributor.author |
SIMOS, TE |
en |
dc.contributor.author |
RAPTIS, AD |
en |
dc.date.accessioned |
2014-03-01T01:41:18Z |
|
dc.date.available |
2014-03-01T01:41:18Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0377-0427 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23456 |
|
dc.subject |
SCHRODINGER EQUATION |
en |
dc.subject |
BESSEL AND NEUMANN FUNCTIONS |
en |
dc.subject |
BESSEL FITTING METHOD |
en |
dc.subject |
PHASE SHIFT PROBLEM |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
BACKWARD DIFFERENTIATION METHODS |
en |
dc.subject.other |
TRIGONOMETRIC POLYNOMIALS |
en |
dc.subject.other |
INTEGRATION |
en |
dc.subject.other |
FAMILIES |
en |
dc.subject.other |
INTERPOLATION |
en |
dc.title |
A 4TH-ORDER BESSEL FITTING METHOD FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
A new fourth-order method is developed for the numerical integration of the one-dimensional radial Schrodinger equation. This method integrates Bessel and Neumann functions exactly. It is shown that, for large r, this new formula is much more accurate and rapid than the Bessel fitting method of second order which is developed by Raptis and Cash (1987). The benefit of using this new approach is demonstrated by considering some numerical examples based on the Lenard-Jones potential. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS |
en |
dc.identifier.isi |
ISI:A1992KE17600003 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
313 |
en |
dc.identifier.epage |
322 |
en |