HEAL DSpace

A 4TH-ORDER BESSEL FITTING METHOD FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author SIMOS, TE en
dc.contributor.author RAPTIS, AD en
dc.date.accessioned 2014-03-01T01:41:18Z
dc.date.available 2014-03-01T01:41:18Z
dc.date.issued 1992 en
dc.identifier.issn 0377-0427 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/23456
dc.subject SCHRODINGER EQUATION en
dc.subject BESSEL AND NEUMANN FUNCTIONS en
dc.subject BESSEL FITTING METHOD en
dc.subject PHASE SHIFT PROBLEM en
dc.subject.classification Mathematics, Applied en
dc.subject.other BACKWARD DIFFERENTIATION METHODS en
dc.subject.other TRIGONOMETRIC POLYNOMIALS en
dc.subject.other INTEGRATION en
dc.subject.other FAMILIES en
dc.subject.other INTERPOLATION en
dc.title A 4TH-ORDER BESSEL FITTING METHOD FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1992 en
heal.abstract A new fourth-order method is developed for the numerical integration of the one-dimensional radial Schrodinger equation. This method integrates Bessel and Neumann functions exactly. It is shown that, for large r, this new formula is much more accurate and rapid than the Bessel fitting method of second order which is developed by Raptis and Cash (1987). The benefit of using this new approach is demonstrated by considering some numerical examples based on the Lenard-Jones potential. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS en
dc.identifier.isi ISI:A1992KE17600003 en
dc.identifier.volume 43 en
dc.identifier.issue 3 en
dc.identifier.spage 313 en
dc.identifier.epage 322 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής