dc.contributor.author |
KARRAS, DA |
en |
dc.contributor.author |
VAROUFAKIS, SJ |
en |
dc.contributor.author |
ANTONIOU, GE |
en |
dc.contributor.author |
CARAYANNIS, GB |
en |
dc.date.accessioned |
2014-03-01T01:41:26Z |
|
dc.date.available |
2014-03-01T01:41:26Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0925-2312 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23492 |
|
dc.subject |
NEURAL NETWORKS |
en |
dc.subject |
HOPFIELD-TANK MODEL |
en |
dc.subject |
WALSH TRANSFORM |
en |
dc.subject |
FOURIER TRANSFORM |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.title |
HOPFIELD-TANK NEURAL NET - WALSH TO FOURIER-TRANSFORM |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
A simple method for the computation of the Discrete Fourier Transform (DFT) from the Walsh Transform, using the Neural Network model of Hopfield and Tank, is presented. The proposed method circumvents the algorithmic complexity of the DFT. The computation time for the evaluation of the DFT coefficients depends upon a time constant which characterizes the neural network. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
NEUROCOMPUTING |
en |
dc.identifier.isi |
ISI:A1992JD95000006 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
37 |
en |
dc.identifier.epage |
41 |
en |