HEAL DSpace

MICROSTRUCTURE IN KINEMATIC-HARDENING PLASTICITY

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author VARDOULAKIS, I en
dc.contributor.author FRANTZISKONIS, G en
dc.date.accessioned 2014-03-01T01:41:28Z
dc.date.available 2014-03-01T01:41:28Z
dc.date.issued 1992 en
dc.identifier.issn 0997-7538 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/23498
dc.subject.classification Mechanics en
dc.subject.other PLANE-STRAIN en
dc.subject.other CONTINUUM en
dc.title MICROSTRUCTURE IN KINEMATIC-HARDENING PLASTICITY en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1992 en
heal.abstract A gradient regularization of the classical kinematic-hardening plasticity is presented. The underlying continuum model is formally related to Mindlin's elasticity theory with micro-structure. The evolution law for the back stress is identical to Mindlin's higher order equilibrium equation. For consistency reasons the flow rule of classical plasticity is modified by incorporating the Laplacian of the plastic multiplier. The variational formulation of the problem with appropriate boundary conditions is given and an expression for the dissipated energy is established. Shear-band analysis shows that the theory provides the band thickness, and regularizes the governing equations. Micro-structure introduces a singular perturbation to the classical surface instability analysis, and the internal length l is the perturbation parameter. In addition, micro-structure effects tend to reduce the wavelength at onset of surface instability. en
heal.publisher GAUTHIER-VILLARS en
heal.journalName EUROPEAN JOURNAL OF MECHANICS A-SOLIDS en
dc.identifier.isi ISI:A1992JH03900003 en
dc.identifier.volume 11 en
dc.identifier.issue 4 en
dc.identifier.spage 467 en
dc.identifier.epage 486 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής