dc.contributor.author |
SOLOVYEV, AD |
en |
dc.contributor.author |
KONSTANTINIDIS, DG |
en |
dc.date.accessioned |
2014-03-01T01:41:31Z |
|
dc.date.available |
2014-03-01T01:41:31Z |
|
dc.date.issued |
1992 |
en |
dc.identifier.issn |
0040-585X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23513 |
|
dc.subject.classification |
Statistics & Probability |
en |
dc.title |
RELIABILITY ESTIMATION OF A COMPLEX RENEWABLE SYSTEM WITH AN UNBOUNDED NUMBER OF REPAIR UNITS |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1992 |
en |
heal.abstract |
In this study an asymptotical analysis of the reliability of a complex renewable system with an unbounded number of repair units is provided. The system state is given through a binary vector e(t) = [e1 (t), . . . , e(n) (t)], e(i) (t) = 0(1), if at the moment t the ith element is failure-free (failed). We assume, that at the state e the ith element has failure intensity lambda(i)(e). At the instant of failure of every element the renewal work begins and the renewal time has distribution function G(i)(t). Let E- be the set of failed system states. The goal of this study is the asymptotic estimation of the distribution of the time until the first system failure tau = inf{t: e(t) is-an-element-of E- \e(0) = 0BAR}. |
en |
heal.publisher |
SIAM PUBLICATIONS |
en |
heal.journalName |
THEORY OF PROBABILITY AND ITS APPLICATIONS |
en |
dc.identifier.isi |
ISI:A1992LC15300018 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
98 |
en |
dc.identifier.epage |
100 |
en |