dc.contributor.author |
Anagnostopoulos, K |
en |
dc.contributor.author |
Bowick, M |
en |
dc.contributor.author |
Coddington, P |
en |
dc.contributor.author |
Falcioni, M |
en |
dc.contributor.author |
Han, L |
en |
dc.contributor.author |
Harris, G |
en |
dc.contributor.author |
Marinari, E |
en |
dc.date.accessioned |
2014-03-01T01:41:39Z |
|
dc.date.available |
2014-03-01T01:41:39Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23565 |
|
dc.subject |
Finite Size Scaling |
en |
dc.subject |
Large Scale Simulation |
en |
dc.subject |
Specific Heat |
en |
dc.title |
Fluid random surfaces with extrinsic curvature. II |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0370-2693(93)91577-A |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0370-2693(93)91577-A |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
We present the results of an extension of our previous work on large-scalesimulations of dynamically triangulated toroidal random surfaces embedded in$R^3$ with extrinsic curvature. We find that the extrinsic-curvature specificheat peak ceases to grow on lattices with more than 576 nodes and that thelocation of the peak $\lam_c$ also stabilizes. The evidence for a truecrumpling |
en |
heal.journalName |
Physics Letters B |
en |
dc.identifier.doi |
10.1016/0370-2693(93)91577-A |
en |