HEAL DSpace

APPLICATION OF THE GREEN AND THE RAYLEIGH-GREEN RECIPROCAL IDENTITIES TO PATH-INDEPENDENT INTEGRALS IN 2-DIMENSIONAL AND 3-DIMENSIONAL ELASTICITY

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author IOAKIMIDIS, NI en
dc.contributor.author ANASTASSELOU, EG en
dc.date.accessioned 2014-03-01T01:42:03Z
dc.date.available 2014-03-01T01:42:03Z
dc.date.issued 1993 en
dc.identifier.issn 0001-5970 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/23689
dc.subject.classification Mechanics en
dc.subject.other STRESS INTENSITY FACTORS en
dc.subject.other CONSERVATION-LAWS en
dc.title APPLICATION OF THE GREEN AND THE RAYLEIGH-GREEN RECIPROCAL IDENTITIES TO PATH-INDEPENDENT INTEGRALS IN 2-DIMENSIONAL AND 3-DIMENSIONAL ELASTICITY en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1993 en
heal.abstract An elementary but quite general method for the construction of path-independent integrals in plane and three-dimensional elasticity is suggested. This approach consists simply in using the classical Green formula in its reciprocal form for harmonic functions and, further, the more general Rayleigh-Green formula also in its reciprocal form, but for biharmonic functions. A large number of harmonic and biharmonic functions appears in a natural way in the theory of elasticity, Therefore, the construction of path-independent integrals (or, probably better, surface-independent integrals in the three-dimensional case) becomes really a trivial task. An application to the determination of stress intensity factors at crack tips is considered in detail and only the sum of the principal stress components is used in the path-independent integral. Further applications of the method are easily possible. en
heal.publisher SPRINGER-VERLAG WIEN en
heal.journalName ACTA MECHANICA en
dc.identifier.isi ISI:A1993KU58100008 en
dc.identifier.volume 98 en
dc.identifier.issue 1-4 en
dc.identifier.spage 99 en
dc.identifier.epage 106 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής