dc.contributor.author |
Farakos, K |
en |
dc.contributor.author |
Kajantie, K |
en |
dc.contributor.author |
Shaposhnikov, M |
en |
dc.date.accessioned |
2014-03-01T01:42:16Z |
|
dc.date.available |
2014-03-01T01:42:16Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23744 |
|
dc.subject |
Effective Field Theory |
en |
dc.subject |
Effective Potential |
en |
dc.subject |
High Temperature |
en |
dc.subject |
Monte Carlo Simulation |
en |
dc.subject |
Perturbation Theory |
en |
dc.subject |
Renormalization Group |
en |
dc.subject |
non perturbative |
en |
dc.subject |
Phase Transition |
en |
dc.subject |
The Critical Temperature |
en |
dc.title |
3D physics and the electroweak phase transition: Perturbation theory |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0550-3213(94)90173-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0550-3213(94)90173-2 |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
We develop a method for the construction of the effective potential at hightemperatures based on the effective field theory approach and renormalizationgroup. It allows one to sum up the leading logarithms in all orders ofperturbation theory. The method reproduces the known one-loop and two-loopresults in a very simple and economic way and clarifies the issue of |
en |
heal.journalName |
Nuclear Physics B |
en |
dc.identifier.doi |
10.1016/0550-3213(94)90173-2 |
en |