dc.contributor.author |
Akrivis, GD |
en |
dc.contributor.author |
Dougalis, VA |
en |
dc.contributor.author |
Kampanis, NA |
en |
dc.date.accessioned |
2014-03-01T01:42:34Z |
|
dc.date.available |
2014-03-01T01:42:34Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
01689274 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23872 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0003344387&partnerID=40&md5=db51a24d1a02345ab80c12cc5994f386 |
en |
dc.title |
Error estimates for finite element methods for a wide-angle parabolic equation |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
We consider a model initial-and boundary-value problem for the third-order wide-angle parabolic approximation of underwater acoustics with depth- and range-dependent coefficients. We discritize the problem in the depth variable by the standard Galerkin finite element method and prove optimal-order L2-error estimates for the ensuing continuous-in-range semidiscrete approximation. The associated ODE systems are then discretized in range, first by a second-order accurate Crank-Nicolson-type method, and then by the fourth-order, two-stage Gauss-Legendre, implicit Runge-Kutta scheme. We show that both these fully discrete methods are unconditionally stable and possess L2-error estimates of optimal rates. © 1994. |
en |
heal.journalName |
Applied Numerical Mathematics |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
81 |
en |
dc.identifier.epage |
100 |
en |