dc.contributor.author |
PAPAGEORGIOU, NS |
en |
dc.date.accessioned |
2014-03-01T01:42:43Z |
|
dc.date.available |
2014-03-01T01:42:43Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0362-1588 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23915 |
|
dc.subject |
EVOLUTION TRIPLE |
en |
dc.subject |
COMPACT EMBEDDING |
en |
dc.subject |
CONTINUOUS SELECTOR |
en |
dc.subject |
FILIPPOV-GRONWALL ESTIMATE |
en |
dc.subject |
PARABOLIC SYSTEM |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
DIFFERENTIAL-INCLUSIONS |
en |
dc.subject.other |
MULTIFUNCTIONS |
en |
dc.title |
A CONTINUOUS VERSION OF THE RELAXATION THEOREM FOR NONLINEAR EVOLUTION INCLUSIONS |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
We consider parametric nonlinear evolution inclusions defined on an evolution triple of spaces. First, we prove some continuous dependence results for the solution sets of both the convex and nonconvex problem and for the set of solution-selector pairs of the convex problem. Subsequently, we derive a parametrized version of the Filippov-Gronwall estimate in which the parameter varies in a continuous fashion. Using that estimate, we prove a continuous version of the nonlinear relaxation theorem. An example of a nonlinear parabolic control system is worked out in detail. |
en |
heal.publisher |
UNIV HOUSTON |
en |
heal.journalName |
HOUSTON JOURNAL OF MATHEMATICS |
en |
dc.identifier.isi |
ISI:A1994PY70300010 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
685 |
en |
dc.identifier.epage |
704 |
en |