dc.contributor.author |
PAPAGEORGIOU, NS |
en |
dc.date.accessioned |
2014-03-01T01:42:54Z |
|
dc.date.available |
2014-03-01T01:42:54Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0033-3883 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/23979 |
|
dc.subject |
EVOLUTION INCLUSIONS |
en |
dc.subject |
G-CONVERGENCE |
en |
dc.subject |
VIETORIS CONTINUITY |
en |
dc.subject |
HAUSDORFF CONTINUITY |
en |
dc.subject |
SENSITIVITY ANALYSIS |
en |
dc.subject |
PARABOLIC OPTIMAL CONTROL PROBLEMS |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
DIFFERENTIAL-INCLUSIONS |
en |
dc.subject.other |
G-CONVERGENCE |
en |
dc.subject.other |
APPROXIMATIONS |
en |
dc.subject.other |
DEPENDENCE |
en |
dc.subject.other |
OPERATORS |
en |
dc.subject.other |
STABILITY |
en |
dc.title |
ON THE SOLUTION SET OF NONLINEAR EVOLUTION INCLUSIONS DEPENDING ON A PARAMETER |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
In this paper examine nonlinear evolution inclusions depending on a parameter. The parameter appears in all the data of the problem, including the nonlinear operator. Using the general concept of G-convergence of operators, we prove three continuous dependence results for both the Vietoris and Hausdorff hyperspace topologies. Then we use these results to study the variational stability of a class of nonlinear, parabolic optimal control problems. |
en |
heal.publisher |
KOSSUTH LAJOS TUDOMANYEGYETEM |
en |
heal.journalName |
PUBLICATIONES MATHEMATICAE-DEBRECEN |
en |
dc.identifier.isi |
ISI:A1994NH72900003 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
31 |
en |
dc.identifier.epage |
49 |
en |