dc.contributor.author |
FARAKOS, K |
en |
dc.contributor.author |
KAJANTIE, K |
en |
dc.contributor.author |
RUMMUKAINEN, K |
en |
dc.contributor.author |
SHAPOSHNIKOV, M |
en |
dc.date.accessioned |
2014-03-01T01:43:01Z |
|
dc.date.available |
2014-03-01T01:43:01Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0129-1831 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24003 |
|
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.title |
THE ELECTROWEAK PHASE-TRANSITION ON THE LATTICE |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
According to the electroweak baryogenesis scenario the matter-antimatter asymmetry of the Universe was created shortly after the Big Bang, during the electroweak phase transition. This process depends strongly on the detailed nature of the electroweak phase transition. For realistic Higgs particle masses, the standard perturbative analysis indicates that the transition is at most only weakly first order. We have studied the transition with non-perturbative lattice Monte Carlo simulations. We found large non-perturbative effects; in particular, the phase transition is a strongly first order one, at least up to Higgs mass of about 85 GeV. This makes electroweak baryogenesis a viable scenario with a Higgs mass not exceeding 85 GeV. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS |
en |
dc.identifier.isi |
ISI:A1994NR06100043 |
en |
dc.identifier.volume |
5 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
379 |
en |
dc.identifier.epage |
381 |
en |