dc.contributor.author |
Kontoravdis, D |
en |
dc.contributor.author |
Likas, A |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T01:43:07Z |
|
dc.date.available |
2014-03-01T01:43:07Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24044 |
|
dc.subject |
Constraint Satisfaction |
en |
dc.subject |
Generic Point |
en |
dc.subject |
Graph Partitioning |
en |
dc.subject |
Optimal Solution |
en |
dc.subject |
Reinforcement Learning |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Set Partitions |
en |
dc.subject |
State Space |
en |
dc.subject |
Higher Order |
en |
dc.title |
Discrete Optimisation Based on the Combined Use of Reinforcement and Constraint Satisfaction Schemes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01421961 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01421961 |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
A new approach is presented for finding near-optimal solutions to discrete optimisation problems that is based on the cooperation of two modules: an optimisation module and a constraint satisfaction module. The optimisation module must be able to search the problem state space through an iterative process of sampling and evaluating the generated samples. To evaluate a generated point, first a |
en |
heal.journalName |
Neural Computing and Applications |
en |
dc.identifier.doi |
10.1007/BF01421961 |
en |