dc.contributor.author |
Goh, K |
en |
dc.contributor.author |
Safonov, M |
en |
dc.contributor.author |
Papavassilopoulos, G |
en |
dc.date.accessioned |
2014-03-01T01:43:09Z |
|
dc.date.available |
2014-03-01T01:43:09Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24067 |
|
dc.subject |
Bilinear Matrix Inequality |
en |
dc.subject |
Controller Design |
en |
dc.subject |
Global Optimization |
en |
dc.subject |
Linear Matrix Inequality |
en |
dc.subject |
Matrix Inequalities |
en |
dc.subject |
Robust Control |
en |
dc.subject |
semidefinite program |
en |
dc.subject |
Symmetric Matrices |
en |
dc.subject |
Tracking System |
en |
dc.subject |
Branch and Bound |
en |
dc.title |
Global optimization for the Biaffine Matrix Inequality problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01099648 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01099648 |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
It has recently been shown that an extremely wide array of robust controller design problems may be reduced to the problem of finding a feasible point under a Biaffine Matrix Inequality (BMI) constraint. The BMI feasibility problem is the bilinear version of the Linear (Affine) Matrix Inequality (LMI) feasibility problem, and may also be viewed as a bilinear extension to |
en |
heal.journalName |
Journal of Global Optimization |
en |
dc.identifier.doi |
10.1007/BF01099648 |
en |