HEAL DSpace

Min-max classifiers: Learnability, design and application

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Yang, P en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:43:20Z
dc.date.available 2014-03-01T01:43:20Z
dc.date.issued 1995 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24089
dc.subject Boolean Function en
dc.subject Character Recognition en
dc.subject Feature Vector en
dc.subject Feed Forward Neural Network en
dc.subject Handwritten Character Recognition en
dc.subject Image Processing en
dc.subject lms algorithm en
dc.subject Machine Learning en
dc.subject Mathematical Morphology en
dc.subject Pattern Classification en
dc.subject Supervised Learning en
dc.subject Training Algorithm en
dc.subject Value Function en
dc.subject Error Rate en
dc.subject Neural Network en
dc.subject Probably Approximately Correct en
dc.title Min-max classifiers: Learnability, design and application en
heal.type journalArticle en
heal.identifier.primary 10.1016/0031-3203(94)00161-E en
heal.identifier.secondary http://dx.doi.org/10.1016/0031-3203(94)00161-E en
heal.publicationDate 1995 en
heal.abstract This paper introduces the class of min-max classifiers. These are binary-valued functions that can be used as pattern classifiers of both real-valued and binary-valued feature vectors. They are also lattice-theoretic generalization of Boolean functions and are also related to feed-forward neural networks and morphological signal operators.We studied supervised learning of these classifiers under the Probably Approximately Correct (PAC) model proposed en
heal.journalName Pattern Recognition en
dc.identifier.doi 10.1016/0031-3203(94)00161-E en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής