dc.contributor.author |
Yang, P |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T01:43:20Z |
|
dc.date.available |
2014-03-01T01:43:20Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24089 |
|
dc.subject |
Boolean Function |
en |
dc.subject |
Character Recognition |
en |
dc.subject |
Feature Vector |
en |
dc.subject |
Feed Forward Neural Network |
en |
dc.subject |
Handwritten Character Recognition |
en |
dc.subject |
Image Processing |
en |
dc.subject |
lms algorithm |
en |
dc.subject |
Machine Learning |
en |
dc.subject |
Mathematical Morphology |
en |
dc.subject |
Pattern Classification |
en |
dc.subject |
Supervised Learning |
en |
dc.subject |
Training Algorithm |
en |
dc.subject |
Value Function |
en |
dc.subject |
Error Rate |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Probably Approximately Correct |
en |
dc.title |
Min-max classifiers: Learnability, design and application |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0031-3203(94)00161-E |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0031-3203(94)00161-E |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
This paper introduces the class of min-max classifiers. These are binary-valued functions that can be used as pattern classifiers of both real-valued and binary-valued feature vectors. They are also lattice-theoretic generalization of Boolean functions and are also related to feed-forward neural networks and morphological signal operators.We studied supervised learning of these classifiers under the Probably Approximately Correct (PAC) model proposed |
en |
heal.journalName |
Pattern Recognition |
en |
dc.identifier.doi |
10.1016/0031-3203(94)00161-E |
en |