dc.contributor.author |
Bakirtzis, A |
en |
dc.contributor.author |
Theocharis, J |
en |
dc.contributor.author |
Kiartzis, S |
en |
dc.contributor.author |
Satsios, K |
en |
dc.date.accessioned |
2014-03-01T01:43:28Z |
|
dc.date.available |
2014-03-01T01:43:28Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24126 |
|
dc.subject |
Fuzzy Neural Network |
en |
dc.subject |
Fuzzy System |
en |
dc.subject |
Network Structure |
en |
dc.subject |
Short Term Load Forecasting |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Rule Based |
en |
dc.title |
Short term load forecasting using fuzzy neural networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/59.466494 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/59.466494 |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
This paper presents the development of a fuzzy system for short term load forecasting. The fuzzy system has the network structure and the training procedure of a neural network and is called a fuzzy neural network (FNN). An FNN initially creates a rule base from existing historical load data. The parameters of the rule base are then tuned through a |
en |
heal.journalName |
IEEE Transactions on Power Systems |
en |
dc.identifier.doi |
10.1109/59.466494 |
en |