dc.contributor.author |
ANGELIDIS, E |
en |
dc.contributor.author |
DIAMESSIS, JE |
en |
dc.date.accessioned |
2014-03-01T01:43:46Z |
|
dc.date.available |
2014-03-01T01:43:46Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
1070-9908 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24203 |
|
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
INTERPOLATION |
en |
dc.title |
A FAST ALGORITHM FOR COMPUTING INVERSE COSINE TRANSFORMS OR DESIGNING ZERO-PHASE FIR FILTERS IN FREQUENCY-DOMAIN |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
A new algorithm for computing inverse cosine transforms or for designing zero-phase FIR filters from nonuniform frequency samples is presented. The algorithm is simple, fast, recursive and can be used in 1-D or 2-D applications. Based on the three-term recursive relation of the Chebyshev polynomials, the cosine matrix is decomposed into LU products using parallel computations. Two alternative approaches--a direct and a progressive-suitable for serial computations are also derived. Given N samples, the direct version requires 2.5N2 + O(N) flops for computing the inverse cosine transforms or for calculating the filter coefficients, whereas the progressive version neds only O(5N) flops when the next N + 1th sample appears. The algorithm guarantees real results and produces accurate solutions even in cases of designing high-order 1-D or 2-D FIR filters or when the interpolation matrix is ill conditioned. It can be also used in LU-factorization and can be extended to m-D filter design. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE SIGNAL PROCESSING LETTERS |
en |
dc.identifier.isi |
ISI:A1995QX43900005 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
13 |
en |
dc.identifier.epage |
16 |
en |