HEAL DSpace

A FAST ALGORITHM FOR COMPUTING INVERSE COSINE TRANSFORMS OR DESIGNING ZERO-PHASE FIR FILTERS IN FREQUENCY-DOMAIN

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author ANGELIDIS, E en
dc.contributor.author DIAMESSIS, JE en
dc.date.accessioned 2014-03-01T01:43:46Z
dc.date.available 2014-03-01T01:43:46Z
dc.date.issued 1995 en
dc.identifier.issn 1070-9908 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24203
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other INTERPOLATION en
dc.title A FAST ALGORITHM FOR COMPUTING INVERSE COSINE TRANSFORMS OR DESIGNING ZERO-PHASE FIR FILTERS IN FREQUENCY-DOMAIN en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1995 en
heal.abstract A new algorithm for computing inverse cosine transforms or for designing zero-phase FIR filters from nonuniform frequency samples is presented. The algorithm is simple, fast, recursive and can be used in 1-D or 2-D applications. Based on the three-term recursive relation of the Chebyshev polynomials, the cosine matrix is decomposed into LU products using parallel computations. Two alternative approaches--a direct and a progressive-suitable for serial computations are also derived. Given N samples, the direct version requires 2.5N2 + O(N) flops for computing the inverse cosine transforms or for calculating the filter coefficients, whereas the progressive version neds only O(5N) flops when the next N + 1th sample appears. The algorithm guarantees real results and produces accurate solutions even in cases of designing high-order 1-D or 2-D FIR filters or when the interpolation matrix is ill conditioned. It can be also used in LU-factorization and can be extended to m-D filter design. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE SIGNAL PROCESSING LETTERS en
dc.identifier.isi ISI:A1995QX43900005 en
dc.identifier.volume 2 en
dc.identifier.issue 1 en
dc.identifier.spage 13 en
dc.identifier.epage 16 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής