dc.contributor.author |
PANAYOTOUNAKOS, DE |
en |
dc.contributor.author |
MARKAKIS, M |
en |
dc.date.accessioned |
2014-03-01T01:43:49Z |
|
dc.date.available |
2014-03-01T01:43:49Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0020-7462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24209 |
|
dc.subject.classification |
Mechanics |
en |
dc.title |
AD HOC CLOSED-FORM SOLUTIONS OF THE 2-DIMENSIONAL NONLINEAR STEADY SMALL PERTURBATION EQUATION IN FLUID-MECHANICS |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
Making use of convenient ad hoc assumptions we construct closed-form solutions of the non-linear two-dimensional irrotational steady small perturbation equation appearing in fluid mechanics. The methodologies developed succeed in giving the above solutions expressed in the form of fewer arbitrary functions than needed for general solutions. As an application we specify the above mentioned solutions in the case of the simplified non-linear transonic equation governing the boundary value problem of a two-dimensional flow past a wave shaped wall. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS |
en |
dc.identifier.isi |
ISI:A1995RK01600014 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
597 |
en |
dc.identifier.epage |
608 |
en |