HEAL DSpace

FLEXIBLE AND ADAPTABLE BUFFER MANAGEMENT-TECHNIQUES FOR DATABASE-MANAGEMENT SYSTEMS

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author FALOUTSOS, C en
dc.contributor.author NG, R en
dc.contributor.author SELLIS, T en
dc.date.accessioned 2014-03-01T01:43:51Z
dc.date.available 2014-03-01T01:43:51Z
dc.date.issued 1995 en
dc.identifier.issn 0018-9340 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24229
dc.subject BUFFER MANAGEMENT en
dc.subject PERFORMANCE ANALYSIS en
dc.subject RELATIONAL DATABASES en
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Engineering, Electrical & Electronic en
dc.title FLEXIBLE AND ADAPTABLE BUFFER MANAGEMENT-TECHNIQUES FOR DATABASE-MANAGEMENT SYSTEMS en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1995 en
heal.abstract The problem of buffer management in database management systems is concerned with the efficient main memory allocation and management for answering database queries. Previous works on buffer allocation are based either exclusively on the availability of buffers at runtime or on the access patterns of queries. In this paper, we first propose a unified approach for buffer allocation in which both of these considerations are taken into account. Our approach is based on the notion of marginal gains which specify the expected reduction in page faults by allocating extra buffers to a query. Then, we extend this approach to support adaptable buffer allocation, An adaptable buffer allocation algorithm automatically optimizes itself for the specific query workload. To achieve this adaptability, we propose using runtime information, such as the load of the system, in buffer allocation decisions, Our approach is to use a simple queuing model to predict whether a buffer allocation will improve the performance of the system. Thus, this paper provides a more theoretical basis for buffer allocation. Simulation results show that our methods based on marginal gains and our predictive methods consistently outperform existing allocation strategies. In addition, the predictive methods have the added advantage of adjusting their allocation to changing workloads. en
heal.publisher IEEE COMPUTER SOC en
heal.journalName IEEE TRANSACTIONS ON COMPUTERS en
dc.identifier.isi ISI:A1995QT09700006 en
dc.identifier.volume 44 en
dc.identifier.issue 4 en
dc.identifier.spage 546 en
dc.identifier.epage 560 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής