dc.contributor.author |
PAPAGEORGIOU, NS |
en |
dc.date.accessioned |
2014-03-01T01:43:52Z |
|
dc.date.available |
2014-03-01T01:43:52Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
0033-3883 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24234 |
|
dc.subject |
PARAMETER IDENTIFICATION |
en |
dc.subject |
SUBDIFFERENTIAL |
en |
dc.subject |
R-CONVERGENCE |
en |
dc.subject |
DIFFERENTIAL VARIATIONAL INEQUALITY |
en |
dc.subject |
ADJOINT EQUATION |
en |
dc.subject |
MAXIMUM PRINCIPLE |
en |
dc.subject |
EVOLUTION TRIPLE |
en |
dc.subject |
PARABOLIC SYSTEM |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
APPROXIMATION |
en |
dc.title |
IDENTIFICATION OF PARAMETERS IN SYSTEMS GOVERNED BY NONLINEAR EVOLUTION-EQUATIONS |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
In this paper we study the problem of parameter identification for systems governed by nonlinear evolution equations. First we establish the existence of an optimal parameter value for two families of systems. The first family are those systems monitored by evolutions of the subdifferential type, while the second family consists of systems whose dynamics is described by differential variational inequalities. Then using the framework of evolution triples, we obtain necessary conditions for optimality. An example of a parabolic system is worked out in detail. |
en |
heal.publisher |
KOSSUTH LAJOS TUDOMANYEGYETEM |
en |
heal.journalName |
PUBLICATIONES MATHEMATICAE-DEBRECEN |
en |
dc.identifier.isi |
ISI:A1995RG33900002 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
215 |
en |
dc.identifier.epage |
237 |
en |