HEAL DSpace

ON THE 3-D INVERSE POTENTIAL TARGET PRESSURE PROBLEM .1. THEORETICAL ASPECTS AND METHOD FORMULATION

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author CHAVIAROPOULOS, P en
dc.contributor.author DEDOUSSIS, V en
dc.contributor.author PAPAILIOU, KD en
dc.date.accessioned 2014-03-01T01:44:02Z
dc.date.available 2014-03-01T01:44:02Z
dc.date.issued 1995 en
dc.identifier.issn 0022-1120 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/24259
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other DESIGN en
dc.subject.other FLOW en
dc.title ON THE 3-D INVERSE POTENTIAL TARGET PRESSURE PROBLEM .1. THEORETICAL ASPECTS AND METHOD FORMULATION en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1995 en
heal.abstract An inverse potential methodology is introduced for the solution of the fully 3-D target pressure problem. The method is based on a potential function/stream function formulation, where the physical space is mapped onto a computational one via a body-fitted coordinate transformation. A potential function and two stream vectors are used as the independent natural coordinates, whilst the velocity magnitude, the aspect ratio and the skew angle of the elementary streamtube cross-section are assumed to be the dependent ones. A novel procedure based on differential geometry and generalized tenser analysis arguments is employed to formulate the method. The governing differential equations are derived by requiring the curvature tenser of the flat 3-D physical Eucledian space, expressed in terms of the curvilinear natural coordinates, to be zero. The resulting equations are discussed and investigated with particular emphasis on the existence and uniqueness of their solution. The general 3-D inverse potential problem, with 'target pressure' boundary conditions only, seems to be ill-posed accepting multiple solutions. This multiplicity is alleviated by considering elementary streamtubes with orthogonal cross-sections. The assumption of orthogonal stream surfaces reduces the number of dependent variables by one, simplifying the governing equations to an elliptic p.d.e. for the velocity magnitude and to a second-order o.d.e. for the streamtube aspect ratio. The solution of these two equations provides the flow field. Geometry is determined independently by integrating Frenet equations along the natural coordinate lines, after the flow field has been calculated. The numerical implementation as well as validation test cases for the proposed inverse methodology are presented in the companion paper (Paper 2). en
heal.publisher CAMBRIDGE UNIV PRESS en
heal.journalName JOURNAL OF FLUID MECHANICS en
dc.identifier.isi ISI:A1995QD78900006 en
dc.identifier.volume 282 en
dc.identifier.spage 131 en
dc.identifier.epage 146 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής