dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T01:44:18Z |
|
dc.date.available |
2014-03-01T01:44:18Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24330 |
|
dc.subject |
Computer Vision |
en |
dc.subject |
Difference Equation |
en |
dc.subject |
Differential Calculus |
en |
dc.subject |
Distance Transform |
en |
dc.subject |
Dynamic System |
en |
dc.subject |
Eikonal Equation |
en |
dc.subject |
Image Processing |
en |
dc.subject |
Linear System |
en |
dc.subject |
Mathematical Morphology |
en |
dc.subject |
Morphological Operation |
en |
dc.subject |
nonlinear pde |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
Fourier Transform |
en |
dc.subject |
Min Sum |
en |
dc.title |
Differential morphology and image processing |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/83.503909 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/83.503909 |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations |
en |
heal.journalName |
IEEE Transactions on Image Processing |
en |
dc.identifier.doi |
10.1109/83.503909 |
en |