dc.contributor.author |
PAPAGEORGIOU, N |
en |
dc.contributor.author |
PAPALINI, F |
en |
dc.date.accessioned |
2014-03-01T01:44:27Z |
|
dc.date.available |
2014-03-01T01:44:27Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/24379 |
|
dc.relation.uri |
http://emis.kaist.ac.kr/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://mathnet.preprints.org/EMIS/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://emis.luc.ac.be/EMIS/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://emis.maths.adelaide.edu.au/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://www.ii.uj.edu.pl/EMIS/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://emis.library.cornell.edu/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://emis.bibl.cwi.nl/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://ftp.gwdg.de/EMIS/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://www.mat.ub.edu/EMIS/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://www.univie.ac.at/EMIS/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://www.emis.ams.org/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://www.math.helsinki.fi/EMIS/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://www.emis.de/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://www.math.ethz.ch/EMIS/journals/AMUC/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.relation.uri |
http://www.iam.fmph.uniba.sk/amuc/_vol-65/_no_1/_papageo/papageor.pdf |
en |
dc.subject |
Distributed Parameter System |
en |
dc.subject |
Parabolic Problem |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
upper semicontinuous |
en |
dc.subject |
DEP |
en |
dc.subject |
Time Dependent |
en |
dc.title |
ON THE STRUCTURE OF THE SOLUTION SET OF EVOLUTION INCLUSIONS WITH TIME-DEPENDENT SUBDIFFERENTIALS |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
In this paper we consider evolution inclusions driven by a time dep en- dent subdierential operator and a set-valued perturbation term. First we show that the problem with a convex-valued, h -u.s.c. orientor field (i.e. perturbation term) has a nonempty solution set which is an R -set in C(T,H), in particular then compact and acyclic. For the non convex problem |
en |