dc.contributor.author | Ambjørn, J | en |
dc.contributor.author | Anagnostopoulos, K | en |
dc.contributor.author | Ichihara, T | en |
dc.contributor.author | Jensen, L | en |
dc.contributor.author | Kawamoto, N | en |
dc.contributor.author | Watabiki, Y | en |
dc.contributor.author | Yotsuji, K | en |
dc.date.accessioned | 2014-03-01T01:44:30Z | |
dc.date.available | 2014-03-01T01:44:30Z | |
dc.date.issued | 1996 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/24388 | |
dc.subject | Anomalous Dimension | en |
dc.subject | Conformal Field Theory | en |
dc.subject | Finite Size Scaling | en |
dc.subject | Fractal Dimension | en |
dc.subject | Geodesic Distance | en |
dc.subject | Quantum Gravity | en |
dc.subject | Sampling Technique | en |
dc.title | Quantum geometry of topological gravity | en |
heal.type | journalArticle | en |
heal.publicationDate | 1996 | en |
heal.abstract | We study a c = −2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim( rdH ) = dim( N ), where the fractal dimension dH = 3.58 ± 0.04. This result lends support to the conjecture dH = | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |